diabetes

Biomolecular Characterization of Putative Antidiabetic Herbal ExtractsInduction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Red clover extract exerts antidiabetic and hypolipidemic effects in db/db miceTo investigate the effects of red clover extract on the blood glucose and lipid levels of type 2 diabetic db/db mice, male db/db mice were treated with this extract for a period of 5 weeks. The red clover extract had a significant effect on lowering the blood glucose levels of db/db mice. The serum triglyceride, serum total cholesterol, liver triglyceride and liver cholesterol levels for diabetic mice receiving red clover extract were significantly lower compared to those of the untreated diabetic mice. The mRNA expression of two target genes transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)γ was determined by quantitative real-time RT-PCR, and red clover extract was observed to significantly upregulate hepatic glucokinase and CD36 expression. Four target genes transcriptionally regulated by PPARα were also assayed, and red clover extract was observed to significantly downregulate hepatic apolipoprotein C3 expression whereas it had no significant effect on apolipoprotein A5, acetyl CoA oxidase and carnitine palmitoyl transferase-1 expression. In addition, hepatic mRNA expression of fatty acid synthase was also observed to be downregulated by red clover extract treatment. Thus, we conclude that red clover extract significantly improves the glucose and lipid homeostasis in db/db diabetic mice and that these effects are achieved at least in part by activating hepatic PPARα/γ and by inhibiting hepatic fatty acid synthase.